SYNTHESE EINER MODELLVERBINDUNG FÜR EINEN NEUEN GUAJANOLID-TYP

Ferdinand Bohlmann und Axel H. K. Paul

Institut für Organische Chemie der Technischen Universität Berlin

Summary: A synthesis of a hydroazulene derivative with an unsaturated β -lactone moiety related to guaiagrazielolid is described.

Aus der Composite <u>Grazielia intermedia</u> haben wir Verbindungen mit einem β -Lacton-Ring isoliert¹⁾, der bisher bei Naturstoffen nicht vorkam. Ein Beispiel dafür ist Guajagrazielolid 1.

Die hier beschriebene Synthese der Modellverbindung $\frac{2}{2}$ eröffnet einen Zugang zu diesem Verbindungstyp. Ausgehend von dem Hydroazulenon $\frac{3}{2}^{(2)}$ (cis/trans Isomerengemisch) wird durch kinetisch kontrollierte Deprotonierung (LiN(SiMe₃)₂, THF, -78 °C) und anschlie- β ende Umsetzung mit Trimethylsilylchlorid (-78 °C, RT, 16 h) der Silylenolether $\frac{4}{2}$ dargestellt, der mit NBS in THF³⁾ (0 °C, 15 min.) zum α -Bromoketon $\frac{5}{2}$ gespalten wird. $\frac{5}{2}$ liefert bei Behandlung mit 1.2 Äquivalenten LiBr/Li₂CO₃ in DMF (150 °C, 90 min.) das Hexahydroazulenon $\frac{6}{2}$ (cis und trans Ringverknüpfung, 46 % bezogen auf $\frac{3}{2}$), das kürzlich von H. O. House⁴⁾ auf einem anderen Weg erstmals dargestellt wurde. Die beiden zu etwa gleichen Anteilen vorliegenden Stereoisomere können chromatographisch getrennt und anhand ihrer 400 MHz - NMR-Spektren identifiziert werden⁶⁾. Charakteristisch für das cis-Isomere ist die 0.5 Hz W-Kopplung zwischen dem 8-H und einem 6-H. Das bei der anschlie β enden Epoxydierung von $\frac{6}{2}$ mit H₂O₂ in Methanol in Gegenwart von 6n NaOH mit 87 % Ausbeute erhaltene Gemisch der Epoxide $\frac{7}{2}$ wird nicht getrennt, da die Stereochemie dieser Verbindung im Hinblick auf die angestrebte Zwischenstufe $\frac{12}{2}$ keine Bedeutung hat. Auf dieser Stufe gelingt die Einführung des fehlenden oxidierten C-Atoms

durch eine Wittig-Reaktion. Nach Umsetzung von 7 mit Methoxymethylen-triphenylphosphoran (THF, RT, 10 min.) und Aufarbeitung mit wässriger NH_ACl-L ösung wird direkt der Aldehyd $\frac{8}{2}$ isoliert (57 %). Die Reduktion von $\frac{8}{2}$ (NaBH₄, Isopropanol, RT, 2.5 h) führt zu dem Diol 9 (70 %), dessen sekundäre Hydroxygruppe mit Pyridinium-p-toluolsulfonat (0,01 Äquivalent, C_6H_6 , Δ , 12. min.) selektiv abgespalten werden kann. Dabei wird die Verbindung 10 mit dem höher substituierten Diensystem als Hauptprodukt (44 %) erhalten. Durch Oxidation mit Mangandioxid (20 Gewichtsteile MnO₂ auf 1 Teil 10, CH₂Cl₂, RT, 80 min.) wird der Aldehyd $\frac{11}{22}$ dargestellt. Dieser lä β t sich mit NaClO₉⁵⁾ zur Säure 12 oxidieren (57 % bezogen auf 10). Eine direkte Lactonisierung von 12 mit NBS in DMF oder N-Phenylselenophthalimid in $CH_2Cl_2^{(6)}$ gelingt nicht. Mit 2 Äquivalenten NBS in feuchtem DMSO (40 min., RT) lä β t sich 12 jedoch zum Bromhydrin 13 funktionalisieren (33 %), das dann mit 3.4-Äquivalenten Benzolsulfonylchlorid in Pyridin (20 h, RT) $^{7,8)}$ zur Modellverbindung $\underline{2}$ cyclisiert werden kann ($\underline{27}$ %). $\underline{2}$ hat einen Schmelzpunkt von 111 ^oC, was auf eine recht hohe thermische Stabilität des ungesättigten β -Lactons schlie- β en lä β t. Die relative Anordnung der Substituenten folgt aus den NMR-Daten: In Verbindung $\underline{13}$ koppeln die Wasserstoffe 8-H und 9-H nur mit 6 Hz miteinander, was eine diäquatoriale Anordnung der Wasserstoffe wahrscheinlich macht. Am Dreiding-Modell von $\underline{13}$ wird deutlich, da β für den Lactonringschlu β eine Konformation erforderlich ist, in der die Hydroxygruppe äquatorial steht. Der Siebenring mu β folglich umklappen, was offensichtlich auch geschieht, da in Verbindung $\frac{2}{2}$ eine $11_{\bullet}5$ Hz-Kopplung zwischen dem 8-H und dem 9-H beobachtet wird, was für eine transdiaxiale Anordnung der Wasserstoffe spricht (der Ringschluß erfolgt unter Retention an C-9^{7a)}. Verbindung 2 liegt im Falle einer anti-Anordnung des 5-H und des 9-H wahrscheinlich in einer Konformation vor, in der das axiale 6-H und das 9-H räumlich benachbart sind. In der Tat gibt das 9-H im Nuclear-Overhauser-Differenzspektrum ein eindeutiges Signal, wenn auf das 6-H eingestrahlt wird. Aufbauend auf diesen Erkenntnissen wird derzeit die Synthese von 1 bearbeitet.

 $\begin{array}{ccc} \underline{3} & R = R' = H \\ \underline{5} & R = Br & R' = H \\ \underline{6} & R = R' & bond \end{array}$

R

<u>8</u> R= CHO <u>9</u> R= CH₂OH

OH

<u>10</u> R=CH₂OH <u>11</u> R=CHO <u>12</u> R=CO₂H

(9)	Charakter	istische 400	MHz-	NMR -Daten	(CDCl ₂ ,	TMS	als	innerer
	Standard,	Kopplungen	in Hz)	•	J			

<u>2</u> :	6 _{ax} -H dddd	1.70, $J = 14.5$; 13; 11.5; 5.5				
	8-H ddd	4.10, $J = 11.5$; 9.5; 8				
	9-H dddd	5.05, $J = 1; 1; 1.5; 11.5$				
	IR (CCl ₄):	1355 cm ⁻¹				
6ٍ cis;	1-H ddd	3.15, J = 10; 7.5; 5.5				
	8-H dddd	6.54, J = 11.5; 6.5; 3; 0.5				
	9-H ddd	6.00, $J = 11.5$; 3; 0.5				
6 trans:	1-H ddd	2.59, J = 11; 9; 9				
_	8-H ddd	6.51, J = 12; 6; 6				
	9-H ddd	6.01, $J = 12$; 1.5; 1.5				
<u>10</u> :	8-H ddd	5.81, $J = 12; 4; 3.5$				
	9-H d br	5.89, $J = 12$				
	11-H d br	4.12 und 4.18, $J = 11$				
<u>12</u> :	8-H ddd	5.91, $J = 12; 5.5$				
	9-H d br	6.35, $J = 12$				
<u>13</u> :	8-H m	4.52				
~-	9-H d	5.19, $J = 6$				

- ¹⁾ F. Bohlmann und C. Zdero, Phytochemistry 20, 1069 (1981).
- ²⁾ W. Hückel und L. Schnitzspahn, Liebigs Ann. Chem. 505, 274 (1933).
- ³⁾ a) R.H. Reuss und A. Hassner, J. Org. Chem. <u>39</u>, 1785 (1974); b) L. Blanco,
 P. Amice und J.M. Conia, Synthesis, 194 (1976).
- ⁴⁾ H.O. House und J.H.C. Lee, J. Org. Chem. 48, 1661 (1983).
- ⁵⁾ B.S. Bal, W.E. Childers Jr., und H.W. Pinnick, Tetrahedron <u>37</u>, 2091 (1981).
- ⁶⁾ K.C. Nicolaou, D.A. Claremon, W.E. Barnette und S. P. Seitz, J. Am. Chem. Soc. 101, 3704 (1979).
- ⁷⁾ a) W. Adam, J. Baeza und J. -C. Liu, J. Am. Chem. Soc. <u>94</u>, 2000 (1972);
 b) W. Adam, G. Martinez und J. Thompson, J. Org. Chem. <u>46</u>, 3359 (1981).
- ⁸⁾ J. Mulzer und A. Pointner, J. Chem. Soc. 52 (1979).

(Received in Germany 2 January 1984)